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FINITE-DIFFERENCE MIGRATION BY THE OPTIMIZATION OF ONE-WAY EQUATIONS

By Myung W. Lee and Sang Y. Suh 

ABSTRACT

The principle component of the finite-difference migration scheme is 
the approximation of a one-way wave extrapolation operator or a downward 
continuation operator. Usually, this approximation can be carried out 
either by a Taylor series expansion or a continued fraction method of an 
exact one-way extrapolation operator (or a "square root" operator). Due to 
the truncation of the expansion, the dispersion relation of the conventional 
one-way equation is very inaccurate, particularly for high propagation 
angles. This dispersion error controls the limit of the dip angle to be 
properly migrated by the finite-difference method.

In order to improve the dispersion relation, an optimization method was 
investigated. The basic concept of the optimization is to modify the 
coefficients of the conventional equation in such a way that the modified 
coefficients provide a better dispersion relation. This optimization can be 
implemented by minimizing the weighted dispersion error using a 
least-squares method.

This study shows that the optimization improves the dispersion relation 
of the one-way wave equation substantially. For example, within the 
relative dispersion error of 1 percent, the optimized second-order equation 
is reliable up to the propagation angle of 65 degrees; while the 
conventional second-order equation , the so-called 45 degree equation, is 
reliable up to 45 degrees. Since the only differences between the optimum 
and conventional one-way equations are the coefficients in the rational 
approximation of the square-root equation, the conventional finite- 
difference migration computer program can be modified easily in order to 
improve the performance of steep-dip migration.

INTRODUCTION

One of the main purposes of reflection seismology is to image the 
subsurface structure by measuring the reflected waves on the surface. To 
accomplish this objective, the data is subjected to computer processing. 
Seismic migration is a process of reconstructing the subsurface structure 
from the measured data and has received a great deal of attention within the 
last decade. There are three different approaches in modern seismic 
migration, i.e., the finite-difference method (Claerbout and Doherty, 1972; 
Claerbout, 1976), the Kirchhoff integral method (French, 1975; Schneider, 
1978), and the F-K method (Stolt, 1978; Gazdag, 1978). All of the methods 
are based on the wave equation and are conveniently called wave-equation 
migrations.

Wave-equation migration is accomplished by two steps downward 
extrapolation and imaging. The three methods of migration differ in their 
approach on the extrapolation of the wave field. The difference between 
depth migration and time migration is the imaging of the extrapolated wave 
field. Since imaging is simply a method of representing the wave field, the 
method of extrapolation is of great importance in most migration schemes.



The theory of wave extrapolation is based on the square root equation. 
The conventional wave equation represents waves which propagate in positive 
and in negative z-directions simultaneously. On the contrary, the square 
root equation represents waves propagating in one z-direction only. 
In laterally homogeneous media, exact wave extrapolation can be achieved by 
the square-root equation in the frequency-wavenumber domain.

In laterally heterogeneous media, wave extrapolations can be 
accomplished by use of the finite-difference method. In this method, a 
wavefield can be extrapolated by a one-way equation which is a rational 
approximation of the square-root equation. The one-way equation is further 
approximated by a difference equation in the actual computation. There are 
two methods of rationalizing the square-root equation. One is by a Taylor 
series and the other is by continued fractions (Hildebrand, 1956, p. M06). 
The Taylor series method may be called an explicit scheme while the 
continued-fractional method may be called an implicit scheme. The 
conventional 15-degree equation is the first-order approximation of the 
square root equation by either method. The U5-degree is the second-order 
approximation by the implicit scheme.

One of the disadvantages in the finite-difference method is that it 
cannot handle steep-dip structures. This is due to the inaccurate 
dispersion relation of the one-way equation used in the method. The 
inaccuracy comes from the truncation of the exact series expression of the 
square-root equation. Therefore, more terms must be used, i.e., migration 
by higher order equations. Berkhout (1980) and Gazdag (1980) used explicit 
high-order equations in their migration. An advantage of this method is the 
accuracy of the derivatives, which are evaluated by either a convolution in 
the space domain or by a multiplication in the wavenumber domain. This 
method alone cannot handle the steep-dip limitation satisfactorily, as is 
demonstrated in a later section. Besides, this method is numerically 
unstable (Gazdag and Sguazzero, 1984). Ma (1981) developed a more practical 
approach to finite-difference migration using the high-order implicit 
equations. In his method, the high-order equation is split into a series of 
low-order equations that are solved separately.

Berkhout (1979) studied the dispersion relations of the first-, 
second-, and third-order approximate equations and found that the dispersion 
error could be reduced by modifying the coefficients of the equations. His 
results suggest that the dip limitation can be avoided by using a higher 
order equation with modified coefficients. Ma (1981) attempted a similar 
procedure for the fifth-order implicit equation.

In the first section of this paper, the theory of wave extrapolation is 
briefly reviewed and the dispersion relations of one-way equations both 
explicit and implicit are analyzed. In the next section, optimization of 
the implicit one-way equations (using a least-squares method) to minimize 
the dispersion error is discussed. Finally, the optimized equations are 
tested on three examples: (1) extrapolation of a monochromatic wave, (2) 
migration of a synthetic model, and (3) migration of field data. Two 
appendices the finite-difference formulation of the one-way equation and a 
version using only CPU (Central Processing Unit) of the migration 
program are included.



ONE-WAY EQUATIONS

Wave-equation migration consists of two steps: extrapolation and 
imaging. The finite-difference extrapolation uses the one-way equation 
which is a rational approximation of the square-root equation. In this 
section, the basic concept of wave extrapolation is reviewed and the various 
one-way equations in terms of their dispersion relations are investigated.

The theory of wave extrapolation starts from an assumption that the 
wave field p(x, z, t) satisfies the two-dimensional scalar wave equation:

where x is the horizontal distance, z is the depth, t is time, and v is the 
velocity. By introducing k and w, which are the apparent horizontal

wavenumber and the angular frequency, respectively, the wave field can be 

expressed by the following double Fourier transform:

C2)
For the moment, we assume v is independent of x. Substituting equation (2) 
into equation (1) gives an ordinary differential equation:

Equation (3) has two solutions,
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where kz is given by
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Oie of the two solutions represents the wave propagating in the negative 
z-direction, while the other is in the positive z-direction. In order to 
extrapolate the wave field, we must choose only one of the two solutions for 
the following reason .

The wave equation is second order in z and has two independent 
solutions. Therefore, we need two boundary conditions to extrapolate waves 
in the z-direction. But we are given only one boundary condition in seismic 
migration, the wave observed on the surface. If the wave propagates in one 
direction only, we may discard the unnecessary solution in equation (4). 
This reduces the wave equation to the first order in z which can be solved 
with one boundary condition.



We choose the positive sign in equation (4) which implies that the wave 
propagating in the negative z-direction is considered. With the positive 
sign in equation (4), the extrapolation of the wave atz=z toz=z +

Az can be accomplished by the correcting the phase angle, given by k Az.
£t

This is the basic concept of the phase shift method of migration (Gazdag, 
1978). The above approach indicates that the wave extrapolation in the 
(k » z, to) domain might be represented by the following square-root

A

equation, y

where the subscript z represents the derivative with respect to that 
variable. Equation (6) is appropriate for the zero-offset migration. 
For the non-zero offset migration, a double square-root equation (Yilmaz and 
Claerbout, 1980) should be used.

The phase shift method is valid only for laterally homogeneous media. 
If the velocity changes horizontally, the extrapolation can be done in (x, 
z, co) or in (x, z, t) domain with the one-way equation which is a rational 
approximation of equation (6), assuming that the logarithmic variation of 
velocity is less than that of the wave. There are two approaches in the 
approximation   explicit and implicit. The explicit method uses the Taylor 
series expansion while the implicit method uses continued fractions. Both 
of the methods require truncation of the exact expression. This is known as 
the paraxial approximation. Because of the truncation, the derived one-way 
equation is always different from the square-root equation. The difference 
may be represented by the dispersion relations. We investigate the 
dispersion relations of the one-way equations derived by both methods.

The simplest method of approximating the square-root expression of k
given in equation (5) into k is the Taylor series method, z

x

1 = O / . I -}f-K , or^l \ (7)
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f Y\}
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n+1 terms in the series expression. The first-order approximation of kr

t Y\\

Let us define k , the n-th order approximation of k , by taking the first z z

z 

produces the following one-way equation,
-v i nr-p. ± ;-^ (i- -L*

'3- T ^ $*-
in the (k , z,to) domain. By inverse-transforming equation (8), the one-way

X

equation can be written in the (x, z, to) domain as



This equation is known as a 15-degree equation. In the wave extrapolation, 
the wave P and its x-derivative are known, but the z-derivative is unknown. 
Equation (9) represents the unknown P in terms of the known. Therefore,

the equation is an explicit one-way equation. The second-order 
approximation of k produces the one-way equation in (x, z,w) domain as

which also is an explicit one-way equation. Generally, a one-way equation 
derived from the Taylor series method is the explicit equation.

The accuracy of the approximate one-way equation is determined in terms 
of its dispersion relation. Let us consider a plane wave in the direction 
of 9- with respect to the z-axis. The apparent wave numbers in x- and 
z-directions are

(11)

respectively, where k is the true wave number o)/v. The dispersion relation 
of the first-order approximate one-way equation is found by substituting 
equation (11) into equation (7) resulting in

Therefore, the dispersion error, Ak is given by
z

*** =
and is a function of the propagation angle Q and of the wavenumber k. The 
relative dispersion error is defined by the dispersion error normalized by 
the wavenumber, which is a function of only the propagation angle. For a 
reflector having dip angle 0, the propagation angle of the normal ray is 
also 0 with respect to the z-axis. For successful migration, a one-way 
equation which is accurate up to the propagation angle (7 should be used .

Let us define the relative dispersion error limit as 1 percent. Figure 
1 shows the relative dispersion error of explicit one-way equations obtained 
by the Taylor series method. The numbers on the figure are the order of the 
approximation. The higher order approximation gives the more accurate 
dispersion relation. Gazdag (1980) and Berkhout (1980) used the explicit 
higher order equations for migration. The x-derivatives were computed by 
convolution in (x, z, w ) domain or by multiplication in (k , z, u) domain.

This method is effective in reducing the numerical error resulting from the 
approximation of derivatives by differences, ffowever, the methods were not 
effective for steep-dip migration. Figure 1 indicates that a sixteenth 
order equation or more should be used to migrate a 75-degree dipping 
structure .
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Figure 1. Dispersion error in explicit one-way equations obtained by
Taylor series approximation of the wave equation. Numbers annotated 
next to the curves indicate the order of approximation.



The second method of approximating k into k is the use of continued
z x

fractions. Let us define two new variables s and Y as

<- "$ «* «)(. (15)<r _ * ^p-   ^" \ ' J /

respectively. This method is the approximation of Y by a rational function 
of s, resulting in a quadratic equation by squaring equation (16)

+ ^ _ 3 =.0 (17)

The smallest root of equation (17) is found by successive approximations 
(Claerbout, 1976, p. 207). By using n-th approximation of Y, Y , and

(n+1)-th approximation of Y, Y , equation (17) can be written by
n+1

Y Y + ^ Y - S * 0 (18) ID 'h4> ^ J ^) p

This gives a recurrence relation,

V r   A__ (19)'»*» ^r^
Starting from Y = 0, we get the first and second approximations of Y as

V - ^ (20) 
1 ~ Z,

Y - (21)

respectively. The third and fourth approximations are

^-*
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The first-order approximation of the one-way equation is obtained using 
equations (6), (15), (16), and (20), and is the same as the first-order 
equation obtained by the Taylor series method. The second-order equation by 
continued fractions is obtained using equation (21). In the (x, z,w) 
domain, the equation is
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f -, ^ -- f | f g ** + 4-**** __ ̂ p
^

Equation (24) is known as a 45-degree equation. The third and fourth order 
equations by continued fractions are obtained by the same method . These are

(26)

Equation (24) contains an x-derivative term in its denominator. If the 
x-derivative is considered as the spatial convolution, the derivative in the 
denominator corresponds to the spatial deconvolution. Equation (24) may be 
converted to the convolutional form by multiplying both sides of the

2 equation by 4k + 9 . The result represents the unknown P in terms of
XX Z

P which is still unknown. Therefore, equation (24) is an implicit
X X Z

equation. For the same reason, equations (25) and (26) are implicit 
equations. Generally, a one-way equation (with an order greater than two) 
derived by the continued fraction method is an implicit equation. Stolt 
(1978) derived similar equations by transforming the wave equation into the 
floating-time coordinate and by successively approximating the z-derivatives

Ma (1981) introduced a convenient method of solving the higher order 
implicit equations in which the higher order equation is split into a series
of lower order equations. The general form of Y_ is given by

2n

Equation (27) may be split into partial fractions as

n oil$
(28)

£
Therefore, the 2n-th order implicit equation is given by

(29)

in the (x, z, oi) domain. Application of Marzuk's splitting method (Mitchell, 
1969) to equation (29) gives the following series of second-order equations 
and a phase correction equation,

P - N £ c^m^ot* 0 M -I o   - n 
M. * L ~7I    j   ;\   I j > J

n (30)

h - ^ P



Thus, wave extrapolation by the 2n-th order implicit equation is accomplished 
by solving the second-order equations n times and by applying the kAz phase 
correction. In this method, the computing time of the extrapolation is 
approximately proportional to the order of the equation. It is possible to 
apply the splitting method to the (2n-1)th order equation, but it has no 
advantage over 2n-th order equation. The computing time is almost the same 
but the dispersion relation is less accurate.

Figure 2 shows the relative dispersion error of one-way equations 
obtained by the continued fractions method. The numbers shown are the order 
of the approximation. The dispersion relation shown in this figure is more 
accurate than in figure 1. With the same order of approximation, the 
implicit equation is superior to the explicit. Still the implicit equation 
is not satisfactory. Even the eighth-order implicit equation shows more 
than 1 percent relative dispersion error for the propagation angle of 75 
degrees. In order to get an implicit equation reliable up to 90 degrees 
propagation angle with 1 percent relative dispersion error, n must be 100 or 
more. Therefore, the problem of steep dip in finite-difference migration 
cannot be solved by using the higher order equations alone.

OPTIMIZATION OF ONE-WAY EQUATIONS

That the implicit equation better approximates the square-root equation 
than does the explicit equation has been shown. Furthermore, Berkhout 
(1979) modified the coefficients in second and third order implicit 
equations. In his method, the second and third order approximations of Y in 
equations (20) and (21) are modified as

(3D

V . -*- 
3 ~ , -- (32)

respectively. Instead of the original coefficients a~ = a_ s 0.25, he used 

a = 0.279 and a = 0.242 respectively. The modified equations showed 

better dispersion relations than the originals. Ma (1981) introduced a 

modified version of his sixth-order equation, which corresponds to Y,_ in 

this paper. In this section, the optimization of one-way equations by 

modifying the coefficients is discussed.

The approximation of Y into Y? produces the error E? (s) as

(33)
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Substituting equation (27) into equation (33) > and converting into the 
propagation angle 9 gives

- XT ^(
L*l

The optimization procedure may be defined by finding coefficients a. , b. 
(i = 1, 2, ..., n) which minimizes the following integral,

T = E<6)d (35)\J } ^n ^o
where 0 is the maximum optimization angle. The direct approach using 
equation (35) is very difficult and requires laborious numerical 
integration. Moreover, it turns out to be a nonlinear least-squares method. 
The authors tried to solve the problem by the Newton-Gauss method employing 
the iterative Taylor series expansion but the result was not satisfactory. 
The difficulty occurs when n is greater than 2, greater than the 
fourth-order equation , mainly because the solution is very sensitive to the 
initial guess required in the Newton-Gauss method .

To circumvent this difficulty, we used the weighted dispersion error. 
The weighted error EX is defined as the result of E times its

denominator in equation (3*0,
>

(36)
r» ^ ")
£ K'(-^J J
/ "-, \ f;-i ~ 

The optimized coefficients a., b., (i = 1, 2, ..., n) can be found by

minimizing the following integral
V * 
/ f t~ ' ,, \} J A H7)/Aj/nzj \ J f / 

'0

This is a linear least-squares method. The validity for using the weighted 
error can be justified by analyzing its result.

With the standard least-squares method, the optimization coefficients 
are the solution of the following normal equations, 

n

21 ^ , -^ , ,-
(38-a)

H. A ^ -o- -p (38_b)

for i = 1, 2, ..., n
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The integrals in the above equation can be calculated by the following 
integration table (Selby, 1971),

CP Ti -I >   J* £ (39-a)

(39-b)

The solution of equation (38) gives the optimized one-way equation for each 
optimization angle 9 . It is further split into a series of second-order 
equations, which may be solved by the conventional 45-degree migration 
algorithm.

The difficulty in the optimization is that equation (38) is 
ill-conditioned for the higher order equations. The double-precision 
computation employing 64 bits gives considerable error for optimization of 
the sixth-order and the eighth-order equations. Inversion of the 
ill-conditioned matrix is greatly affected by the number of significant 
digits. For this purpose, special Fortran subroutines are written, which 
compute addition, subtraction, multiplication, and division with arbitrary 
bits of precision. All of the computations for solving equation (38) is 
done by these subroutines .

Table 1 shows the optimized coefficients which are further split into 
a series of second-order equations given in equation (29). The 
sixth-order-or-less equations are computed with 100-bit precision; the 
eighth-order and tenth-order equations are computed with 200-bit and 300-bit 
precision, respectively. The first and second columns of the table 
represent the order of the equation and the maximum optimization angle. The 
third and fourth columns represent the numerator and denominator 
coefficients of the split equations.

The dispersion error of the optimized 2n-th order equation is given by

-E.
The relative dispersion error is defined as Akz divided by the wave number 
k. Figure 3 shows the relative dispersion errors of the various one-way 
equations. M ? through M 10 are the errors in the optimized equations, the

subscripts of which represent the order. Yp is the error in the unmodified 

second-order equation, the conventional 45-degree equation. B is the error 

in Berkhout's modified second-order equation. Berkhout's modified equation 

clearly is an improved version of the unmodified second-order equation. The 

optimized second-order equation (M ) is better than B . Note that two 

coefficients are modified in Mp but only one coefficient is changed in Bp.

12



Table 1. Coefficients of optimized, fractioned one-way wave equations

Order a . 
1

65 478 242 060 376 369 527

80 040 315 157

457 289 566

873 981 642

222 691 983

87 ,004 210 420

081 312 882

,414 236 605

972 926 132

744 418 059

150 843 924

90 000 523 275

014 853 510

117 592 008

367 013 245

994 065 088

919 432 661

,614 520 676

105 756 624

10 90 000 153 427

004 172 967

033 860 918

143 798 076

,318 013 812

997 370 236

964 827 992

824 918 565

,483 340 757

,073 588 213
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Figure 3. Dispersion error in the optimized equations (M« through M I ), 

the conventional 45-degree equation (Y ), and Berkhout's modified 

second-order equation (B ? ).
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The improvement of the optimization can be observed by comparing
figures 2 and 3. Accepting the relative dispersion error limit of 1 
percent, the second-order equation, which is accurate up to approximately 45 
degrees in figure 2, is improved up to 65 degrees in figure 3. The 
fourth-order equation which is accurate up to 65 degrees in figure 2 is 
improved up to 82 degrees in figure 3. This behaviour can be observed in 
the eighth-order equation. The optimized tenth-order equation is accurate 
up to 90 degrees, which cannot be achieved by the 100th-order equation 
without the optmization. The validity for using the weighted error in the 
optimization procedure is established.

EXAMPLES

In this section, the optimized one-way wave equations are tested in 
three different examples. The first example is the extrapolation of a 
monochromatic cylindrical wave. The second example is the migration of a 
synthetic reflector model. The last example is the migration of field data.

Figure 4 is the result of monochromatic wave extrapolation by the 
finite-difference method. Figure 4A is computed by using the unmodified 
second-order equation. Figures 4B and 4C are computed by the optimized 
second- and fourth-order equation, respectively. The computational 
procedure is as follows. A two-dimensional (x, z) domain of 2,800 m by 
1,200 m is divided by a regular grid having the intervals Ax = Az = 10 m. 
With the origin on the upper left-hand corner of the domain, the grid index 
in x-direction (j) ranges from 0 to 280; while the grid index in z-direction 
(n) ranges from 0 to 120. A monochromatic wave source is located at j = 80 
and n = 0. The wavelength is 100 m, which corresponds to the 30-Hz wave 
propagating through the 3-km/sec velocity medium. The theoretical solution 
of the wave is approximated by

(41)

where r is the distance from the source. The wave at the source is replaced 
by that of the adjacent grid point. Because of the spatial aliasing, the 
finite-diference method is not applicable near the source point. Therefore, 
the waves at n = 1, 2 and 3 are computed by equation (41). Waves at n = 4 
through n = 120 are computed by the finite-difference method, the details of 
which are described in Appendix A. Figure 4 shows the real part of the wave 
field at even indices of j, j = 0, 2, 4, ..., 280.

The accurate wave extrapolation should be represented by a semicircular 
wavefront. The amplitude should be inversely proportional to the square 
root of the distance from the source. The wavefront in figure 4A is not a 
perfect semicircle. The amplitude in figure 4A does not decay properly 
particularly in a 60-degree deviation from the vertical. These effects are 
caused by the error in the dispersion relation. Figure 4B shows better 
results than figure 4A, and figure 4C is better than figure 4B. The 
optimized second-order equation is better than the original second-order 
equation. The higher order equation is superior to the lower order 
equation. Figure 4C, which is computed by the optimized fourth-order 
equation, shows almost perfect results except for a minor amplitude anomaly 
in the upper-right corner. The results are anticipated from the previous 
discussion on one-way equations.

15



Figure 4. Extrapolation of cylindrical wave by the conventional 45-degree 
equation (A), by the optimized second-order equation (B), and by the 
optimized fourth-order equation (C).
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The result of extrapolation by the optimized sixth or higher order 
equation is almost the same as that by the optimized fourth-order equation. 
The minor amplitude error in the upper-right corner of figure 4C is not 
improved. This implies that factors other than the dispersion relation 
affect the high-angle extrapolation. It is apparent that one of the factors 
is the numerical error occurring from the derivative to the difference 
approximation. The split one-way equations resemble the second-order 
equation in the floating-time coordinate. In the floating-time coordinate, 
the apparent wave number in z-direction is less than the fixed-time 
coordinate for the propagation angle smaller than 60 degrees (Berkhout, 
1980). If the propagation angle approaches 90 degrees, the zero apparent 
wavenumber in z-direction in the fixed-time coordinate increases to co/v in 
the floating-time coordinate. The finite-difference approximation of P

£*

described in Appendix A requires 18 or more grid points per one wavelength to 
give less than 1 percent approximation error. To handle a higher propagation 
angle, a more elaborate difference scheme is required. Otherwise, the grid 
interval AZ should be reduced. Another factor affecting high-angle 
extrapolation is the initial condition. Equation (41) is an asymptotic 
solution which is valid only if distance from the source is far greater than 
the wavelength. The minimum distance in figure 4 is 30 m, i.e., 0.3 times 
the wavelength. There must be considerable error in the initial condition.

Figure 5 is the newly computed result of wave extrapolation with a finer 
grid interval and improved initial condition. Figure 5A is computed by the 
optimized fourth-order equation. Figures 5B and 5C are computed by the 
optimized sixth- and eighth-order equations, respectively. In the 
computation, Az is reduced to 5 m. The grid index in z-direction ranges from 
0 to 240. To avoid the inaccurate initial condition, the finite-difference 
extrapolation starts from n = 20. The waves at n = 0 through n = 19 are 
computed by equation (41). The minimum distance from the source is now 
extended to 100 m which is the same as the wavelength. It is found that 
figure 5B is better than 5A, and 5C is better than 5B. The result shows that 
it is possible, at least theoretically, that high-angle extrapolation can be 
accomplished by the optimized high-order equations. The result by the 
optimized tenth-order equation is amost the same as the result by the 
optimized eighth-order equation. Figure 5 represents the propagation angle 
of up to 87 degrees.

Figure 6 is a synthetic reflector model for the migration test. The 
reflector is asymmetrically W-shaped, the leftmost segment representing a 
70-degree dip, and the rightmost segment representing a 60-degree dip, 
respectively. Two segments in the central part simulate a 45-degree dip. 
There are four different velocities in the model, i.e., 2 km/sec, 3 km/sec, 
3.5 km/sec, and 4 km/sec. The horizontal dimension of the model is 12.75 km 
and the vertical dimension is 6 km. This is not a realistic model, but it 
was chosen to test the migration algorithm for the steeply dipping events in 
the heterogeneous medium.
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Figure 5. Extrapolation of cylindrical wave with finer grid spacing by 
the fourth-order equation (A), sixth-order equation (B), and the 
eighth-order equation (C).
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Figure 6. A W-shaped reflector model simulating 45 , 60 , and 70 dips, 
simultaneously.
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Figure 7 is a synthetic zero-offset section of figure 6. It was 
computed by the phase shift plus interpolation (PSPI) method (Gazdag and 
Sguazzero, 198*0. In the computation, the grid interval is chosen as Ax = Az 
= 50 m to give the number of grid points N and N by 256 and 121,

X Z

respectively. The time increment At is 50 msec and the number of time

samples N is 256. By taking N and N to the powers of two, the Fourier t x t

transforms required in the PSPI method is accomplished by the fast Fourier 
transform (FFT) routine. The PSPI method computes the diffraction which is 
difficult in the ray-tracing method. The dispersion relation of PSPI method 
approaches that of the exact square root equation as the number of reference 
velocities increases. The number of reference velocities used are four which 
is the same as that of the synthetic model. The computation should be 
accurate except in the region of the velocity boundary. The section shows a 
small amount of wrap-around effect, especially at the left-side boundary.

Figure 8 is the result of finite-difference migration of figure 7. 
Figure 8A is computed by the conventional 45-degree equation. Figures 8B and 
8C are computed by the optimized second- and fourth-order equations, 
respectively. Figure 8A shows inaccurate migration except for the 45-degree 
dip reflector represented by the central part of W. Figure 8B shows better 
results than 8A. The 60-degree dipping segment on the right-hand side of W 
is almost accurately migrated in 8B. The 70-degree dipping segment is still 
distorted. Figure 8C, which is computed by the optimized fourth-order 
equation does not meet our anticipation satisfactorily. Although the 70- 
degree dipping segment is more accurately migrated in figure 8C than in 8B, 
it still shows a considerable amount of phase error and minor amplitude 
error. From the previous dispersion analysis, the equation should handle up 
to 80 degrees. The inaccuracy in the migration may be summarized as follows.

The amplitude error is primarily due to abrupt changes in velocity both 
in the synthesis of the zero-offset section and in the migration. The 
lateral velocity variation should be smooth to get an accurate synthetic 
section by the PSPI method. To make the velocity variation smooth, a high 
cut filter should be applied on the velocity boundary. This will give us 
many velocities in the filtered model, which require a number of reference 
velocities in the PSPI method. The computation time by the PSPI method 
increases almost linearly to the number of reference velocities. It took 
about 3,000 CPU seconds by the VAX 11/780 computer to produce figure 7 using 
four reference velocities.

The phase error, which is more significant than the amplitude error, in 
the migrated result in figure 8 is due to the numerical error occurring from 
derivative to difference approximation. In the migration, the spatial grid 
intervals Ax and Az are 50 m. The time interval At is 50 msec. A 10 Hz 
signal propagating through the model having the average half velocity of 
1,500 m/sec has a wavelength of 150 m. Therefore, the spatial grid interval 
of 50 m is too gross for the wavelength.
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Figure 7. Synthetic zero-offset time section of figure 6,
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Figure 8. Finite-difference migration of figure 7 by the conventional 
45-degree equation (A), the optimized second-order equation (B), 
and the optimized fourth-order equation (C).
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To accurately approximate the derivatives to differences within a 1 
percent limit, the finite-difference method described in Appendix A requires 
about five grid points in x-direction and about eighteen grid points in 
z-direction, respectively. Therefore, the spatial grid intervals Ax and Az 
should be reduced to less than 30 m and 10 m, respectively. The reduction 
gives us an increase in the number of grid points about ten times that of 
the previous grid points. It took approximately 2,640 CPU seconds by the 
VAX 11/780 computer to migrate figure 7 by the fourth-order equation with 50 
m grid spacing. Migration with finer grid spacing will take hours of CPU 
time and days of clocktime by a time-sharing computer. The problem of 
computing time may be reconciled by using an array processor. The next 
example is actually computed by the array processor.

Figure 9 is a stacked section. The data were collected at Block 7 of 
the Korean continental shelf in 1980 and were processed using the seismic 
data processing facilities of the U.S. Geological Survey. The main hardware 
of the facility consists of a VAX 11/780 computer and FPS-120B array 
processors. The operating seismic software is DISCO (Digicon's Interactive 
Seismic Computer). The common depth point (CDP) interval of figure 9 is 25 
m, the number of traces are 501, and the horizontal dimension is 12.5 km.

Figure 10 shows the migrated section of figure 9 by employing the 
optimized second-order equation. The stacking velocity produced by NMO 
analysis is directly used for the migration. As the stacking velocity is 
given in the time domain, the time migration algorithm is applied. The 
variable z in the depth migration is replaced by the two-way travel time 
of the image ray. The extrapolation step of the migration At is 48 msec. 
The maximum frequency is 40 Hz. To speed up the computation, almost all of 
the migration algorithm is written in the assembler language of the array 
processor. The computing time of figure 10 is 59 CPU seconds and 271 AP 
seconds.

Figure 9 contains considerable noise in the lower half of the section. 
The noise is primarily considered as the P-S converted wave. Therefore, it 
is hardly expected that a good migrated result in that portion will be 
achieved. On the contrary, the upper half of the section shows relatively 
good signal-to-noise ratio. The effect of migration is well observed in 
figure 10. Several diffractions are nicely focused. The bowtie at 5 km and 
on 1.3 sec in figure 9 is successfully migrated to give the syncline 
structure in figure 10.

CONCLUSION

One of the disadvantages in the finite-difference migration is that it 
cannot handle a steep-dip structure. This is due to the inaccurate 
dispersion relation of the one-way wave equation utilized in the scheme. In 
this paper , an optimization method is studied in order to improve the 
dispersion relation of the implicit one-way wave equations. The basic 
concept of the optimization is modifying the coefficients, which has been 
attempted by Berkhout (1979) and Ma (1981). In our optimization, all of the 
adjustable coefficients are subject to the modification, i.e., the number of 
optimzed coefficients is the same as the order of the one-way equation.
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A least squares method, which minimizes the weighted dispersion error, is 
investigated. By introducing the weighted error, the least-squares method 
is reduced to the linear problem. Optimized coefficients are computed for 
up to the tenth- order equation. Each of the optimized equations shows 
significantly improved dispersion relation over the corresponding 
unoptimized equation. Using the optimized equations, the steep-dip 
migration can be achieved accurately without going to the higher order 
equation.

The optimized equations are tested on three examples. The first example 
is on the extrapolation of the monochromatic cylindrical wave. In the 
example, the optimized second-order equation shows better results than the 
unoptimized second-order equation which is known as the U5-degree equation. 
The computing times by the two equations are exactly the same. The 
optimized higher order equations show substantially better results than the 
lower order equations. The second example which is on the migration of a 
synthetic model, shows similar results. A stack section is migrated by the 
optimized second-order equation. The result is considered as acceptable.

The extrapolation of high-angle waves requires suppression of numerical 
error occurring from the derivative to the difference approximation as well 
as the one-way equations having accurate dispersion relation up to that 
angle. One of the methods of suppressing the numerical error is by working 
with finer grid intervals. Use of a finer grid interval will result in many 
hours of computing time. A method should be developed to control the 
numerical error effectively.
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APPENDIX A. Finite-Difference Formulation of the One-Way Equation.

A 2n-th order implicit equation is split into n second-order implicit 
equation. Therefore, it is sufficient to describe the solution method of 
the second order equation which is given by

A two-dimensional wave field is defined on (x, z) domain. The domain is 

divided into a regular grid, the intervals of which are Ax and Az. The wave 

field at an intersection, P(jAx, NAz) is denoted by P". The problem of
*J

extrapolation is to find wave P t (j = 0, 1, ..., J) from the given P.(j =
\J \J

0, 1, ..., J). The finite-difference method employs the difference 

approximation of equation (A-1).

The z-derivative in equation (A-1) is approximated by

where

This is an expression of Q-ank-Nicolson's scheme of the finite-difference 
method. The x-derivative in equation (A-1) is approximated by

where

Equation (A-2) is accurate within 1 percent if 18 or more grid points exist 
per one wavelength. Equation (A-3) is accurate within 1 percent if 5 or 
more grid points exist per one wavelength (Claerbout, 1976). Substituting 
equations (A-2) and (A-3) to equation (A-1) gives

a \ *** P"S-. I r^/    ' V. f ' "" /     f j i \ - i- - | ^  < I 
ft l^ V / O/

Expanding equation (A-4) in z index gives

c pj1 - P r ) = o A| *« , ( A_5)
Expanding equation (A-5) in x index gives

A P -r B~ P**' -Y C- 
j ' J-i J j J ' i-i J
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where

P\- - 2
 J

h _ A - K -^B-P + I - r -
\ ~ ,\ ' - i \ ' T ) o *' J 0 j-i o J /

for j = 1, 2, ..., J-1,
# # «

where A , B , and C indicate the complex conjugate of A , B , and C ,
j j j J j J

respectively.

Equation (A-6) gives J-1 equations for J+1 unknowns. The remaining two 
equations are given from the boundary conditions. A conventional boundary 
condition such as Dirichlet or Neumann is subject to artificial reflections 
at the boundary. To suppress the artificial reflections, Clayton and 
Engquist (1980) suggest

0r
in the fixed-time coordinate. The coefficients a, b, and c are determined
so that the dispersion relation of equation (A-7) approximates the quarter 
circle. The boundary condition for equation (A-1) may be in the form of

? _ ; ^ ^'x p (A-8) '* - L v 4-vc^ r
where the coefficients c and d are determined as the dispersion relation 
approximates to one-half that of the interior. If it approximates +k axis,

A

it is used at the +x boundary; if it approximates -k axis, it is used at

the -x boundary. The coefficients are found by the least squares method 
which is very similar to the optimization of one-way equations.

The finite-difference formulation of equation (A-9) uses equation (A-2). 
The formulation at x = 0 boundary is

2 C s; ) ^ P; - -
Expanding equation (A-9) in the z index gives

^ ̂  f pr1- p0nj ( A- 1 ° >
Expanding equation (A-10) in x index gives

B P M 4 c P h* = P u'11)
^
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where

B c =

p*
The finite-difference equation at x = JAx boundary can be derived by
changing the subscripts as 0 to J and 1 to J-1, and the coefficients C to A 
as

where

A P + B P^1 t>
J 3-1 J ' J ~~ J (A-12)

A ^ =

9 T =

Equation (A-11) is added to the top of equation (A-6) and equation (A-12) is 

appended to the bottom of equation (A-6). Introducing vectors P_ and £

which represent p""1" and D.(j = 0, 1, ..., J), the result will be
«J J

M ^ D (A-13)

where matrix M is given by a tridiagonal matrix as

M =-

R C

A, B, C, 

AA 1>. <^
t 

»
»

Z. V0
V

 £ £* V- &^C-t   Q

B T C_ 
J J .

The solution to equation (A-13) may be found by introducing an auxilliary 
equation

i ~ J 7 J J-*-l ' (A-14) 

Coefficients E. and F. are found by comparing the coefficients to equation

(A-13). The unknowns are then computed by backward substitution (Claerbout, 
1976).
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APPENDIX B. CPU Version of the Migration Program

This program computes a depth-migrated section from a zero-offset 
seismic section. The name of the program is FXZMIG. It is written in 
Fortran 77 language. Five files are referenced by the program. The first 
file is named by FXZMIG.DAT and is intended for reading the input parameters 
only. A more thorough description on the parameters may be found later. 
The second file is the trace file containing the zero-offset seismic 
section. The format of the file is UNFORMATTED, i.e., the information is 
represented by the internal format. Each trace consists of one record. 
There is no header in the trace, i.e., the file should contain amplitude 
information only. The third file is the velocity file containing the 
migration velocities in (x, z) domain. Like the trace file, it is 
UNFORMATTED and has no header. The velocity should be defined at every 
trace and at every depth step. The fourth file is named by FXZMIG.OUT and 
will contain the migrated result in (x, z) domain after the successful run 
of the program. The last file is a scratch file intended for the program 
internally.

Four lines of input parameters are required for the program to run. The 
first line defines six parameters: NX, NZ, NT, DX, DZ, and DT. NX is the 
number of traces; NZ, the number of depth steps; NT, the number of time 
samples; DX and DZ, the spatial intervals in meters; and DT, the temporal 
interval in msec. The second line defines two parameters, NESTDR and WPCNT. 
NESTDR represents the order of the one-way equation which will be used for 
the migration. The number indicates half of the order, i.e., 1 is the 
optimized second order, 2 is the optimized fourth order, and so on. It 
should not exceed 5. If NESTDR is less than 1, the conventional 45-degree 
equation will be used for the migration. WPCNT is a parameter for the 
numerical dip-filter. If it is 0, no dip-filter will be applied. The 
dip-filter algorithm may be found in Claerbout (1976).

The third line describes two parameters, SW1 and SW4, i.e., the lowcut 
and highcut frequencies, respectively, in Hz. The highcut frequency should 
not exceed Nyquist frequency. The fourth line defines the name of two input 
files, i.e., the velocity file and the trace file. All the lines should be 
physically separated by a carriage return for an interactive job. For a 
batch job, the lines must be on separate cards. The parameters within a 
line should be separated by a comma and/or spaces, i.e., in free format of 
the Fortran language. Each file name should be enclosed in a pair of 
apostrophies. The following example shows the input parameters used in the 
computation of figure 8C.

Example of the input parameters

256 120 130 50 50 50
2 0
1 9

'VEL008', 'MDLPHS.OUT 1

The program statements are as follows.
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******************************

PROGRAM F X Z M I VERSION HG.3 SEP/28/84

ccc 
c
c

FINITE-DIFFERENCE WAVE EQUATION HIGRATIOIM IN <F,X,Z> DOMAIN 

*************************** ***

PROGRAM FXZMIG

IMCLUOE 'FXZHIG.CMB/LIST'

CONETtNTS OF FILE FXZMIG.CMB

COMMON / BLK1 /
NX,
NZ,
NT,
DX,

5 DZ,
6 DT,
7 NX2,NY,NX1,
8 NTFFT,
S NW,DW,
A SWO»SWltSW4,
E? WIMAG,AMIMAG

NO. OF TRACES,
MO. OF SAMPLES
NO. OF TIME SAMPLES,
TRACE INTERVAL,
Z-STEP INTERVAL,
SAMPLING TIME,
NX*2, NX-2, NX-1,
FFT LENGTH IH TIME,
NO. OF FREQUENCIES, AND INCREMENT, 

! START(SWO,SW1 ) AD END(SW4) FRQUENCIES 
! DIP-FILTER PARAMETERS

COMMON / HLK2 /
1 EXTBUFC12,5), ! EXTRAPOLATION MATRIX,
2 3NDBUF(2,5), ! BOUNDARY MATRIX
3 NESTOR ! ORDER OF THE NEST

CHARACTER*56 FILVEL, FILTRC
COMMON / BLKF / FILVEL, FILTRC

! VELOCITY FILE
! TRACE FILE
! MIGRATED OUTPUT

1
/->

1

PARAMETER
LDVVEL =
LDVTRC =
LOVMIG =

11,
12,
13

END OF FILE FXZMIG.CMB

DIMENSION 3UF (320 000) 
DATA MAXfiFS / 320 000 /

CALL GETCRD
CALL ALCMEM (HAXHFS, IV, IM, JM, IA, IH, 1C, ID, IQ)
CALL EDTVEL <HUF)
CALL TM2FRQ (BUF, BUF(IG))
CALL tlXTCON
CALL MLTSTP (BUF(IV), BUF(IM), BUF(JM), BUF(IA), BUF(IB),

BUF(IC), BUF(ID), BUF(IQ» 
CALL OUTPUT (BUF) 
STOP 'NORMAL COMPLETION' 
END

1
2
3
4
5
6
7
3
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 
3^
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
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60

62

64
66
68

SUBROUTINE GETCRO

READ INPUT DATA FROM CARD.

c
C RLAD/yRITE SEC
C

OPEN
WRITE
READ
WRITE
PEAO
WRITE
READ
WRITE
READ
WRITE

(UN I
(6,
(5,
<6,
<5,
(6,
(5,
(6,
(5,
(6,

T = 5
60)
* )

62 )
* )

64)
* )

66)
* )

68)

t FILE - 'FXZMIG', TYPE ~ 'OLD', READONLY)

NT, DX, 
NT, OX, 
WPCNT 
WPCNT

NX, NZ, 
NX, NZ, 
NESTDR, 
NESTDR, 
SWl, SW4 
SW1, SW4 
FILVEL, FILTRC 
FILVEL, FILTRC

DT
DT

CLOSE (5)

FORMAT SECTION

FORMAT (1H1///35C *»)//
WELCOME TO *** F X Z 
FINITE-DIFFERENCE WAVE 
DOMAIN'// 35(» **)//
INPUT DATA SUMMARY'/)

M I G ***»5X»VERSION HG.3*/
EQ. MIGRATION IN (F,x,Z)',

FORMAT CT9»!\!K» T19*NZ»T29*NT»T38»DX»T49»DZ'T59»DT*/ 
3I1C, 3F10.1)

FILTRC =  ,2X,A)

FOR HAT CO
FORMAT CO
FORMAT <»0

PARAHETER

NX2 =
NY =
NX1 =
DT =
MTFFT =
F N Y 9 =

IF (Syi.GE

PI =
DM =
SWl -
SW4 =

IW1 =
IW4 =
MW =
SWO =
SWMAJ =
WIMAG =

*T5 f NESTDR»T16«WPCNT»
»T8» SF1»
FILVFL

EXAMIJMAT

NX *
NX -
NX
DT
KPOWR2
0.5 /

 SW4 .OR

ACOS (-
2. *
2. *
2. *

SWl /
SW4 /
IW4 -
DW *
(SWl +
- WPCNT

T18'SF4' / 2F
=«t2XfA/» FI

ION SECTION

NX
2
1
/ 1000.
<NT)
DT

. SW4.GT.FNYQ

1. )
PI / (NTFFT
PI * SWl
PI * SW4

D W * 1.0
D W - 0.5
I y i + i
IWl
SW4) / 2.

* SWMAJ /

/
1
L

)

1

STOP »ERROR IN SFRQ»

DT)

57
53
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
aa
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
103
109
110
111
112
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RETURN 
END

113
114

SUBROUTINE ALCHEM (MAXBFS, IV, IM f JM, IA, IB, 1C, ID, IQ)

ALLOCATE MEMORY OF THE GLOBAL BUFFER AND 
CHECK THE MAXIMUM BUFFER SIZE.

INCLUDE  FXZMIG.CMB/NOLIST'

IV =
IM =
JM =
IA =
IB =
1C =
ID =
IQ -
IQ =
NBFEXT =
NBFDMX =
NBFREQ =

1
IV
I M
JM
IA
IB
1C
ID
MAXO
IG
NX
MAXO

! VBU
+ NX ! AMO
 «  NX ! AM2
+ NX ! ABU
+ NX 2 ! BBU
+ NX 2 ! CBU
* NX2 ! DBU
* NX 2 ! QBU
(IQ, IV * NTFFT*2 - 1)

+ NX2 * NW - 1
* NZ
(NBFEXT, NBFDHX)

VBUF START ADDRESS

IF (NRFREQ ,6T* ^AXBFS) STOP 
RETURN
END

1 INSUFFICIENT BFS'

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

10

20

SUBROUTINE MLTSTP (VBUF, AMBUF, AM2BUF, ABUF, BBUF, CBUF, DBUF,
QBUF)

MULTISTEP EXTRAPOLATION AND IMAGING.

INCLUDE   FXZMIG.CMB/NOLIST'
COMPLEX QBUF(NXtNW)
DIMENSION VBUF(NX)

REWIND LDVVEL
OPEN <UNIT = LDVMIG, FILE = 'FXZMIG .OUT ' » FORM = 'UNFORMATTED',
TYPE = 'UNKNOWN')
CALL IMAGEZ <OBUF, ABUF)
DO 20 IZ = 2, NZ
READ (LDVVfL) VBUF
DO 10 JW = 1* Kv,
SW = SWO * DH * (JW - 1)
CALL VSMULT (NX, V8UF, SWt AMBUF)
CALL EXTPOL (OBUF(1,JW), ABUF, B3UF, CBUF, DBUF, AMBUF, AM2BUF)
CALL IMAGEZ (QBtF, ABUF)
TYPE *, IZ, '-TH STEP COMPLETED'
CONTINUE
RETURN
END

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
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10

SUBROUTINE TMPFPQ (BUP, Q13UF)

GET TIME-DOMAIN DATA, TRANSFORM, AND SAVE ON G8UF IN 
DEMULTIPLEXED FORM.

INCLUDE 'FXZMIG.CHB/NOLIST'

COMPLEX QBUF(NXtNW)
DIMENSION BUF(NTFFT*2)
DIMENSION HUFC2)

OPEN (UNIT = LDVTRC, FILE = FILTRC, FORM = 'UNFORMATTED',
TYPE = »QLD f f READONLY)
NT2 = NT + NT
NTFFT2 = NTFFT + NTFFT
lyi = 2 * IFIX(SWO / DW * 0.5) + 1

DO 10 IK - l t NX
CALL STORE (NTFFT2, BUF, 0.)
READ (LOVTRC) (BUF(J), J = 1, NT2, 2)
CALL FFTC (NTFFT, 3UF, 1*)
CALL ^OVEJC (NWf BUF(lWl), QSUFdXtl), 1, NX)
CONTINUE
CLOSE, CLDVTRC)
RETURN
END

163
164
1 r ': 5

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

SUBROUTINE OUTPUT (BUF)
INCLUDE 'FXZMIG.CMB/NOLIST 1
DIMENSION 3UF<NX*NZ)
REWIND LOVMIG
DO 10 JZ = 1« NZ 

10 READ (LDVMIG)
REWIND LDVWIG
DO 20 IX = 1, NX 

20 WRITE
RETURN
END

(BUF(lXfJZ)f IX = NX)

(BUFCIX,JZ)f JZ = 1, NZ)

139
190
191
192
193
194
195
196
197
193
199

10

SUBROUTINE IHAGEZ (QBUFt BUF) 

IMAGE THE MIGRATED klAVE FILED 

INCLUDE »FXZHIG.CMB/NOLIST»

COMPLFX OBUF<MXf NW) 
DIMENSION BUF(NX)

DO 10 IX r 1, NX
CALL SUMVJ <MWf QBUF(IX,1)» BUF(IX), NX2)
CONTINUE
WRITE (LDVMIG) (BUF(IX)f IX = If NX)
RETURN 
END

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
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SUBROUTINE EXTPGL (GBUFi ABUF, BBUF, CBUF, DBUF, AMBU P , AM2BUF) 

EXTRAPOLATE THE WAVE ALONG THE Z DIRECTION,

INCLUDE 
COMPLEX 
COMPLEX 
DIMENSION

 FXZMI6.CM3/NQLIST'
QBUF(MX)f ABUF(NX),BBUF(NX),CBUF(NX),D3UF(NX) 
XTINER, XTOUTR 
AMBUF(NX)

AMBUF, AM2BUF)CALL VVMULT (NX, AMBUF,
DO 10 K = 1, NESTOR
CALL CFBND2 (AMBUF, BBUF(l), XTINER, XTGUTRt BNDBUF(1,K))
ABUF<1) = XTINER * GBUF(2) * XTOUTR * QBUF(l)
CALL CFBND2 (AHBUF(NX), BBUF(NX), XTINER, XTOUTR, BIMDBUF ( 1 , K) )
ABUF<NX)= XTINER * GBUF(NXl) «  XTOUTR * QBUF(NX)
CALL CFINT2 (CBUF, ABUF, OBUF, BBUF, EXTBUF ( 1 ,K ) , AMBUF , A M26UF )
CALL CVAMMA (NY, QBUF , QBUF ( 3 ) , CBUF(2), GBUF(2), DBUF(2)t

DSUF(2) ) 
X» QBUF, ABUF, BBUF, D8UF)CALL TRIDGX 

10 CONTINUE

DO 20 IX 
20 QBUF(IX) 

RETURN 
END

1 , MX 
GBUF(IX) * CEXP (CMPLX (0., DZ * AMBUF(IX)))

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
233

SUBROUTINE CFIMT2 (CLF, CNF, CLO, CND» CFH, AHB, AM2)

COMPUTE DIFFERENCE COEFFICIENTS OF 2-ND ORDER WAVE EQUATION 
SEE PAGE 42-R EG. (10A).

VARIABLE DESCRIPTION. 

NAME LENGTr- DESCRIPTION

CLF
CNF
CLD
CND
CFM
AMB
AM2

NX2
NX 2
NX 2
NX2
3*4
NX
NX

COEFF. OF OLD/OFF-DIAGONAL
COEFF. OF MEW/OFF-DIAGONAL
COEFF. OF OLD/DIAGONAL
COEFF. OF NEW/DIAGONAL
MATRIX COEFFICIENTS OF P. 42-P EG. (10A)
W / V ( I)
AM ** 2

INCLUDE 'FXZMIG.CMB/NOLIST*
DIMENSION CLF(4), CNF(4), CLD(4), CND(4)
DIMENSION CFM(3,4), AMB(NX), AM2(NX)

CALL
CALL
CALL
CALL
CALL
CALL
CALL

VSMSAJ
\ISMSAJ
VS^SAJ
VSMSAJ
VSMULJ
VSMULJ
VSMULJ

(NY,
(IViY ,
(NY,
(NY,
(NY,
(NY,
(NY,

AM2
AM2
AM2
AM2
AMB
A MB
AMB

(
(
(
(
(
(
(

2) ,
2) ,
2) ,
2) ,
2),
2 ) ,
2) ,

CFM(
CFM(
CFM(
CFM (
CFM(
CFM(
CFM(

2
2
2
2
3
3
3

il)
t2)
9 3)

t 4 )
tl)
,2)
9 3)

CFM (
CFM(
CFM(
CF^(
CLF
CNF
CLD

Itl
1 9 2

1 t 3
If 4
(4)
(4)
(4)

) t
) f
) *
) f
9

9

9

CLF(3) ,1,2)
C N F ( 3 ) , 1 , 2 ) 
CLD(3) ,1,2) 
CND(3),1,2) 
1» 2) 
It 2) 
If 2)

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
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CALL VSMULJ (NY, AMB(2>, CFH(3,4), CND(4), 1, 2)

RETURN 
END

269
270
271
272

SUBROUTINE CFHMD2 (AMREAL, XTRATEt XTINER, XTOUTR, 3COF)

COMPUTE TRANSPARENT BOUNDARY COEFF1CIENTS(XTRATE,XTINER,XTOUTR) 
SEE PAGE 4C-R EG. (11)

INCLUDE 'FXZMIG.CMB/NOLIST*
COMPLEX FYEB, XTRATE, XTINER, XTOUTR, CMDZ, CAMX, CSCALE, CAM 
DIMENSION BCOF(?)

AOX
EYEB
CAM
CMDZ
CAMX
CSCALL
XTRATE
XTINER
XTOUTP
RETURN
END

BCOF(l) * DX
CMFLX (0*, 2. * 8COF(2M
CMPLX (AMREAL, AMIMAG)
CAM * D Z
CAM *
1. / (
CSCALE
CSCALE

ADX

CSCALE

+ CAMX + EYEB) 
( CMDZ - CAMX «  EYEB) 
( CMDZ + CAMX - EYEB) 
(-CMDZ + CAMX + EYEB)

273
274
275
276
277
278
279 
2ftO
281
282
283
284
285
286
287
288
289
290
291
292
293

SUBROUTINE CFINTI (CFM, R, C, OFCNMR, ALPHA)
C
c
c
c
c
c
c
c
c
c
c
c
c

c
c

INITIALIZE CFW(3,4) EXTRAPOLATION MATRIX GIVEN IN P42-R
E Q . ( 1 0 A ) .

DEFINITION OF THE EXTRAPOLATION MATRIX : CFM(3,4)

CFMd, J)
CFM(2 f J)
CFM(3 t J)
J = 1
J = 2
J = 3
J = 4

CONSTANT TERM
CGEFF. OF AM * AM
COCFF. OF I * AM
OLC/CFF-DIAGONAL
NEW/OFF-DIAGONAL
OLD/DIAGONAL
NEW/CIAGONAL

INCLUUL »FXZMIG.CMB/NOLIST»
DIMENSION CF^(3,4)

BETA
Fl
F2
G2
Gl

ALPHA - 0.5
(B «  B) * DX * DX / DFCNMR
(Fl  »  Fl) * AM I MAG

C * DZ
-G2 AMI MAG

CALL CFINTJ (CFN'(1,1), Fl, F2 f Gl, G2, ALPHA, -l.t -1.)
CALL CFINTJ (CFM(1,2), Fl, F2, Gl, G2t ALPHAt -l.t 1.)
CALL CFINTJ {CFP(1,3), Fl, F2, Gl, G2, BETA, 2., 2.)

294
295
296
297
298
299
300
301
302
303
304
305
306
307 
30S
309
310
311
312
313
314
315
316
317
318
319
320
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CALL CFINTJ <CFM(1,4), Fit F2, SI, G2, BETA,

RETURN 
END

-2.) 321
322
323

SUBROUTINE CFINTJ (CQF, Fl, F2, Gl , G2 , ALPHA, Rl , R.2 )

GENERATE A 3-ELLMEMT EXTRAPOLATION COEFFICIENT VECTOR GIVEN IN 
P 42-R EQ. (1C). 
COFd) CONSTANT TERM 
COF(2) CCEFF. OF AM * AM 
COFC3) COEFF, OF I * AM

DIMENSION CCFC3)

COFd) =
COF(2) =
COF<3) =
RETURN
END

Rl +
ALPHA
Rl *

Rl
*

ALPH

+
Rl

A *

R2
*

F2

*
Fl
+

Gl

* G2

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

SUBROUTINE EXTCOM

GENERATE EXTRAPOLATION COEFFICIENTS

INCLUDE 'FXZMIG.CH8/NOLIST' 
DIMENSION DFCeiJF(2) 
DOUBLE PRECISION A(15), 0(15) 
DATA MODE / -1 /

DATA
DATA

DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

A<
3<

Ai
B<
A<
Bi

Ai
Bi
A<
HI
A<
8<

A<
B(
A(
B<
A 1
B(
A <
8<

[1
[1

(2
(2
[3
[3

(4
(4
[5
[5
[6
16

;7

> /
) /

) /
) /
) /
) /

) /
) /
) /
) /
) /
) /

) /
:7) /
;e
18
[9
!9
:i
;i

) /
) /
) /
> /
0) /
0) /

0
0

' 0
' 0

0
0

0
0
0
0
0
0

0
0
0
0
0
0
0
0

 

*

*

 

 

 

*

*

*

*

 

*

 

 

*

*

 

*

 

*

376
478

873
040
222
457

972
004
744
081
150
414

991
000
911
016
602
120
102
362

369
242

9*1
315
691
289

926
210
418
312
843
236

834
737
282
329
498
110
624
806

527
059

642
156
982
565

131
419
058
382
924
604

774
959
437
891
780
756
305
692

234
603

171
988
666
835

£94
911
525
016
026
654

675
542
100
492
802
314
081
332

052
743

890
852
100
625

782
239
258
760
968
513

097
660
351
279
238
730
323
044

! 65

! 80

! 87

! 89

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
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DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

A
3
A
B
A
8
A
B
A
3

(
(
(
(
(
(
(
(
(
(

11) t
11 ) i
12) t
12) t
13) y
13) /
14) t
14) 4

15) /
15) i

' 0
' 0
* 0
t 0
' 0
' 0
' 0
' 0
' 0
' 0

.

.

 

.

.

.

.

 

.

.

997
000
964
004
824
033
433
143
073
318

370
153
827
172
918
860
340
798
583
013

236
427
991
967
564
917
757
075
212
812

438
175
P78
255
779
808
434
648
879
535

328
533
123
246
961
142
262
762
826
422

90

DATA DFC3UF / 1. 000 000 000 t

IF <NESTOR . LT. 1> THEN 
NESTDP = 1 
A(l) = 0.25 
B( 1) - 0.5

EMDIF
IF (NODE .GE. 0) THEN 

OX = ABS (OX) 
DZ = A8S (DZ)

ELSE
DK = -ABS (CX) 
OZ - -ABS (DZ)

EMDIF

0. 124 600 000 /

! MODELING MODE

! MIGRATION MODE

KO = (NLSTOR * (NESTDR - 1)) /
DO 10 K - It NESTDR
AA = 1. / ACK+KO)
BB r AA * 3(K+KO>
CALL CFBNDG (BNDBUF(1»K)

10 CALL CFINTT
RETURN 
END

(F.XTHUFd fK)
ACK+KO)t Q(K+KO))
AAf BB, DFCBUF(l), DFCBUF(2>>

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403 
4C4
405
406
407

SUBROUTINE CFBNDG (OCOF, A, B)

GENERATE THE TRANSPARENT BOUNDARY COEFFICIENTS A3

3*XX / (1 «  A*XX) === BB*Y / (1  
XX = DERIV(X)**2 /
Y - I * DERIV(X)/
BCOF(l) = AA
BCOF(2) = BB

DIMENSION BCOF(2)
LOGICAL VIRGIN
DATA VIRGIN / .TRUE. /

COMPUTE INTEGRALS (S2 THRU 36)

AA*Y)» WHERE 
f AND

IF (VIRGIN)
VIRGIN
S?

THEN
 FALSE. 
A TAN (1.)

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
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S4 =S2*0.75 427
S6 =S4*5. /6. 428
S3 = 2. / 3. 429
S5 = S3 * 0.8 430

END IF 431
C 432
C COMPUTE. NORMAL EQUATION CGEFFICIEMTS 433
C 434

All - B * B * S6 435
A12 = B * <S4 A * S6) 436
A22 = S2 - 2.*A*S4 + A*A*S6 437
81 = 3 * B * S5 438
B2 = B * <S3 - A * S5) 439

C 440
C SOLVE THE EQUATION 441
C 442

DETERM = 1. / (All * A22 - A12 * A12) 443
AA - DETEPM * (81 * A22 - 82 * A12) 444
3B = DETERS * <R2 * All - Bl * A12) <*45

C 446
C CONVERT COEFFICIENTS IN OLD FORMAT, I.E., 447
C 448
C BOLD(AA,83) - Y / (AA + H3*Y) 449
C 450

3COF(1) = 1. / B8 451
BCOF(2) - AA / B8 452
RETURN 453
END 454

SUBROUTINE EOTVEL (8UF) 455
C 456

INCLUDE »FX£MIG.CMB/NOLIST» 457
DIMENSION 3UF(I\<X, MZ) 458

C 459
DPEN (UNIT = LDVVEL, FILE = FILVEL, FORM = 'UNFORMATTED', 460

4 TYPE - »OLD», READONLY) 461
C 462

DO 20 IX = 1, N> 463
READ (LOWED (QUF(IX» JZ ) , JZ = 1, NZ ) 464
DO 10 JZ = If NZ 465

10 BUF(IX»JZ> = 2. / BUF(IX,JZ) 466
20 CONTINUE 467

CLOSE (LDVVEL) 468
C 469

OPEN (UNIT = LDVVEL, PILE = *FKZMIG. SC1   , FORM = 'UNFORMATTED', 47Q
+ TYPE = 'SCRATCH') 471

C 472
DO 30 JZ = 2, NZ 473

30 WRITE (LOWED (BUF(IX, JZ), IX = 1, NX) 474
AMIMAG = WIMAG * BUF(1,1) 475
RETURN 476
END 477

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 478
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C 479
C THIS IS A STACK OF ELEMENTARY SU3 D ROGRAMS REFEREIMCEO 480
C BY THF MIGRATION PROGRAM. 431
C 462
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 483
C 434

FUNCTION KPOWH2 (MUMBER) 485
C 486
C FIND A NUMBER WHICH IS .GE. THE ARGUMENT AND IS ALSO 487
C A PGWFR OF 2, 468
C 489

KPOWR? = 1 490
DO 10 K = It 15 491
KPOyP2 - KPOUB2 + KPOWR2 492
IF (KPOWR2 .GE.. NUMBER) RETURN 493

10 CONTINUE 494
STOP » ERR OP IN KPOWR2* 495
END 496

SUBRQUTIME CVAMNiA <Nt A, 3 i C» D» E» F) 497
COMPLEX A<i\,<), 8<N)f C(N)t D(N)» E(N)« FCN) 496
DO 10 I - It K 499

10 F ( I ) - <A(I)*B(I»*C(I) * 0<I)*E(I> 500
RETURM 501
E\<D 502

SUBROUTIME FFTC <LX f CX f SIGN I) 503
C 504
c FAST FOUPIER TRANSFORM. SEE CLAEPTJOUT P 12. 505
C 506 

COMPLEX CX(LX), CARGi CEXP, CW» CTEMP 507
d = 1 503
DO 30 I = 1, LX 509
IF (I .GT. J) GO TO 10 510
CTEMP = CX(J) 511
CX(d) = CX(I) 512
CX(I) = CTEHP 513

10H=LX/2 514
2C IF (J .LE. M) GO TO 30 515

d = d - M 516
M = M / 2 517
IF (V, ,GE. 1) GO TO 20 ^18

30J-d-»-^ 519
L =1 520

40 ISTEF - 2 * L 521
DO 50 M = It L 522 
CARG = CMPLXCO.f 3.14159265 * SIGNI * (M - 1) / L) -23
Cy = CEXP(CARG) 524
DO 50 I = Mi LX. , I STEP 525
CTEMP = CW * CX(I * L) 526
CX<I+L> = CX<I) - CTEMP 527

50 CX(I) = CX(I) + CTEMP 528
L = ISTFP 529
IF (L . LT. LX) GO TO 40 530
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IA =
13 =
DO 10 I =
IA =
IB =
B(IB) =
RETURN
END

1
1
It
I A
IB
A( ]

- JA
- JB
N
+ JA
+ JB

[A )

RETURN 531
END 532

SUBROUTINE MOVEJC <N» A, H, JAt JB) 533
COMPLEX A<M)t Q(N) 534

	536
	537
	538
	539 

10 B(IB) = A<IA) 540
	541
	542

SUBROUTINE STORE (N, X, CONST) 543
DIMENSION X(N) 544
IF (N .LT. 1) GO TO 12 545
DO 10 I = It N 546

10 X(I) r CONST 547
12 RETURN 548

END 549

SUBROUTINE SU^VJ (N, X, SIGMA, JMP) 550
DIMENSION X(2> 551
SIGMA - 0. 552
IX - I JMP 553
DO 10 I - It N 554
IX = IX + JMP 555

10 SIGMA = SIGMA + X(IX) 556
RETURN 557
END 558

SUBROUTINE TRXDGX (N, T, At 8t D) 559
C 560
C TRICIAGONAL EQUATION yiTH TRANSPARENT BOUNDARY CONDITION. 561
C 562

COMPLEX T(M) f A(N) , B(N) » D(N)» DEN 563
C 564

Ml = N - 1 565
DO 1C I = 2, M 566
DEN - 1. / (3(1) + A(I) * 3(1-1)) 567
3(1) = - A(I) * DEN 568

10 A(I) - (0(1) - A(I) * A(I-D) * DEN 569
T(N ) =(A<N1)*B(N) * A(N ) ) / (1. - 8(N) * 8(N1)) 570
DO 20 J = It Ml 571
I - H - J 572

20 T(I) =B(I)*TCI*1)+A(I) 573
RETURN 574
END 575

SUBROUTINE VS^SAJ (M, A, SI, S2 , C, JMPA, JMPC) 576
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10

10

DIHENSI
JA
JC
DO 10 I
JA
JC
CCJC)
RETURN
END

SUBROUT
DIMENSI
1JA
IJC
DO 10 I
IJA
IJC
C(IJC)
RETURN
END

ON
-
-
-
 
-
 

I ME
QH
-
-
-

-
-
~

A < N >  
1
1

If K
JA +
JC +
SI *

VSMUL
A < N ) «
1
1

1, M
IJA

IJC
S

C(N)
JMPA
JMPC

JMPA
JMPC
A( JA)

J (Nt At
C<M)
JMPA
JMPC

+ JMPA
+ JMPC
* A(IJA)

S» C» JMPA, JMPC)

57R
579
580
581
582
583
584
585

586
587
588
589
590
591
592
593
594
595

10

SUBROUTINE VSMULT <N» 
DIMENSION A<2), C<2) 
DO 10 I = 1. N 
C ( I ) = S * A (I )
RETURN 
END

C) 596
597
598
599
600
601

10

SUBROUTINE VVMULT (N, A, 8, 
DIMENSION A(N) f 8(N), C<N)

C)

DO 10 I = 
C(I) =
RETURN 
END

1 * N 
ACI ) 8(1 )

602
603
604
605
606
607
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